Queuing Models and Subspace Identification in Logistics
نویسندگان
چکیده
منابع مشابه
Subspace system identification
We give a general overview of the state-of-the-art in subspace system identification methods. We have restricted ourselves to the most important ideas and developments since the methods appeared in the late eighties. First, the basis of linear subspace identification are summarized. Different algorithms one finds in literature (Such as N4SID, MOESP, CVA) are discussed and put into a unifyin...
متن کاملIdentification of stable models in subspace identification by using regularization
In subspace identification methods, the system matrices are usually estimated by least squares, based on estimated Kalman filter state sequences and the observed inputs and outputs. For a finite number of data points, the estimated system matrix is not guaranteed to be stable, even when the true linear system is known to be stable. In this note, stability is imposed by using regularization. The...
متن کاملSubspace Identification of Multivariable Hammerstein and Wiener Models
In this paper, subspace-based algorithms for the simultaneous identification of the linear and nonlinear parts of multivariable Hammerstein and Wiener models are presented. The proposed algorithms consist basically of two steps. The first one is a standard (linear) subspace algorithm applied to an equivalent linear system whose inputs (respectively outputs) are filtered (by the nonlinear functi...
متن کاملTraffic Flow Analysis Based on Queuing Models
One of the most important issues in the plant layout design especially in mass production organizations with high inter-plant logistics is‘material flow and inter-plant traffic analysis and its effects on the production capabilities or pauses in production lines. In this paper the inter-plant traffic analysis issue on the basis of single channel queue model (M/M/1) is analyzed in a carmaker c...
متن کاملIdentifying Positive Real Models in Subspace Identification by Using Regularization
This paper deals with the lack of positive realness of identified models that may be encountered in many stochastic subspace identification procedures. Lack of positive realness is an often neglected, but important problem. Subspace identification algorithms fail to return a valid linear model if the so-called covariance model, which is obtained from an intermediate realization step in the subs...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Acta Technica Jaurinensis
سال: 2015
ISSN: 2064-5228,1789-6932
DOI: 10.14513/actatechjaur.v8.n1.352